28002 measured reflections

 $R_{\rm int} = 0.030$

7489 independent reflections 6751 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Benzyldiphenylphosphane)chloridogold(I)

Omar bin Shawkataly,^a* + Abu Tariq,^a Chin Sing Yeap^b§ and Hoong-Kun Fun^b

^aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: omarsa@usm.my

Received 2 November 2010; accepted 3 November 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.028; wR factor = 0.053; data-to-parameter ratio = 37.6.

In the title compound, $[AuCl(C_{19}H_{17}P)]$, the Au^I atom exists within a P and Cl donor set that constitutes an almost linear geometry. The three phenyl rings make dihedral angles of 38.33 (14), 81.26 (15) and $81.28 (14)^{\circ}$ with each other. In the crystal, molecules are linked into chains along the b axis by intermolecular C-H···Cl hydrogen bonds.

Related literature

For general background to gold complexes, see: Parish & Cottrill (1987); Tiekink (2002); Baenziger et al. (1976); Chiu et al. (2009). For the synthesis of (CH₃)₂SAuCl, see: Francis (1901). For a related structure, see: Shawkataly et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

$[AuCl(C_{19}H_{17}P)]$	$V = 3431.3 (4) \text{ Å}^3$
$M_r = 508.71$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 16.1403 (11) Å	$\mu = 8.82 \text{ mm}^{-1}$
b = 9.0380 (7) Å	$T = 100 { m K}$
c = 23.5259 (17) Å	$0.27 \times 0.22 \times 0.12 \text{ mm}$
$\beta = 91.012 \ (2)^{\circ}$	

Data collection

Bruker APEXII DUO CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.196, T_{\max} = 0.408$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	199 parameters
$wR(F^2) = 0.053$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 1.43 \ {\rm e} \ {\rm \AA}^{-3}$
7489 reflections	$\Delta \rho_{\rm min} = -2.38 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected	geometric	parameters	(Å,	°).	
----------	-----------	------------	-----	-----	--

Au1—P1	2.2292 (7)	Au1-Cl1	2.2983 (7)
P1-Au1-Cl1	173.62 (2)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7B\cdots Cl1^{i}$	0.97	2.71	3.675 (3)	175
Symmetry code: (i) x.	$v = 1. \tau$			

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) under the University Research Grant 1001/PJJAUH/811115. AT is grateful to USM for a Post-Doctoral Fellowship. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2625).

References

- Baenziger, N. C., Bennett, W. E. & Soborofe, D. M. (1976). Acta Cryst. B32, 962-963.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chiu, Y. C., Lin, C. H., Hung, J. Y., Chi, Y., Cheng, Y. M., Wang, K. W., Chung, M. W., Lee, G. H. & Chou, P. T. (2009). Inorg. Chem. 48, 8164-8172. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

[‡] Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 75450 Melaka, Malavsia.

[§] Thomson Reuters ResearcherID: A-5523-2009.

[¶] Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my

metal-organic compounds

Francis, C. P. (1901). J. Am. Chem. Soc. 23, 250–258.
Parish, R. & Cottrill, S. M. (1987). Gold Bull. 20, 3–12.
Shawkataly, O. bin, Tariq, A., Ghani, S. S., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m1217–m1218. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Tiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol. 42, 225–248.

supplementary materials

Acta Cryst. (2010). E66, m1535-m1536 [doi:10.1107/81600536810045071]

(Benzyldiphenylphosphane)chloridogold(I)

O. bin Shawkataly, A. Tariq, C. S. Yeap and H.-K. Fun

Comment

Gold and gold compounds have been used for medicinal purposes over a long period of time (Parish and Cottrill, 1987). Phosphinegold (I) forms an important class of compounds of gold (Baenziger *et al.*, 1976). Their thiolate derivatives are compounds with well known medicinal properties (Tiekink, 2002). They are conveniently prepared from their phosphinegold(I) chloride precursors and it is in this context that the title compound $C_6H_5CH_2P(C_6H_5)_2AuCl$, was prepared and characterized. Complex of Iridium (III) with benzyldiphenyl phospine is reported (Chiu *et al.*, 2009), however, no such metal complex with gold (I) is known. Herein, we report the crystal structure of the title complex $C_6H_5CH_2P(C_6H_5)_2AuCl$.

In the title compound (Fig. 1), the P1–Au1–Cl1 is almost linear with an angle of 173.62 (2)°. The three phosphine-substituted phenyl rings (C1–C6, C8–C13 and C14–C19) make dihedral angles of 38.33 (14), 81.26 (15) and 81.28 (14)° with each other (C1–C6/C8–C13, C1–C6/C14–C19 and C8–C13/C14–C19). The geometric parameters are comparable to its related structure (Shawkataly *et al.*, 2010). In the crystal structure, the molecules are linked into chains along the *b* axis by intermolecular C7–H7B···Cl1 hydrogen bonds (Fig. 2, Table 2).

Experimental

The title compound was prepared by mixing equimolar quantities of Me₂SAuCl, obtained as per conventional method (Francis, 1901) and $C_6H_5CH_2P(C_6H_5)_2$ (Strem Chemicals Co. Ltd.) in CH_2Cl_2 held at room temperature. The solution was stirred for 2 h and white crystalline solid was recovered after the removal of solvent under vacuum. The colourless plate-like crystals were obtained in 90% yield from the layering of methanol over a concentrated dichloromethane solution of the compound (m.p. 208 °C, decomposition) kept at refrigerator for couple of days.

Refinement

All hydrogen atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. The maximum and minimum residual electron density peaks of 1.43 and -2.38 e Å⁻³, respectively, were located 0.73 and 0.60 Å from the Au1 and Cl1 atom, respectively.

Figures

Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.

Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into chains along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.

(Benzyldiphenylphosphane)chloridogold(I)

Crystal data	
$[AuCl(C_{19}H_{17}P)]$	F(000) = 1936
$M_r = 508.71$	$D_{\rm x} = 1.969 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 9893 reflections
<i>a</i> = 16.1403 (11) Å	$\theta = 2.7 - 37.4^{\circ}$
b = 9.0380 (7) Å	$\mu = 8.82 \text{ mm}^{-1}$
c = 23.5259 (17) Å	T = 100 K
$\beta = 91.012 \ (2)^{\circ}$	Plate, colourless
$V = 3431.3 (4) \text{ Å}^3$	$0.27\times0.22\times0.12~mm$
Z = 8	

Data collection

Bruker APEXII DUO CCD area-detector diffractometer	7489 independent reflections
Radiation source: fine-focus sealed tube	6751 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.030$
φ and ω scans	$\theta_{\text{max}} = 35.0^\circ, \ \theta_{\text{min}} = 2.7^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -26 \rightarrow 26$
$T_{\min} = 0.196, \ T_{\max} = 0.408$	$k = -7 \rightarrow 14$
28002 measured reflections	$l = -37 \rightarrow 37$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.053$	H-atom parameters constrained
<i>S</i> = 1.14	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.P)^{2} + 12.0783P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
7489 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$

199 parameters	$\Delta \rho_{max} = 1.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -2.37 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Au1	0.323189 (5)	0.699677 (10)	0.101304 (4)	0.01995 (3)
Cl1	0.31261 (4)	0.94885 (7)	0.08307 (3)	0.02787 (12)
P1	0.34216 (4)	0.45646 (7)	0.11042 (3)	0.01953 (11)
C1	0.11935 (17)	0.4585 (3)	0.08496 (12)	0.0293 (5)
H1A	0.1301	0.5168	0.0534	0.035*
C2	0.04361 (18)	0.4704 (4)	0.11189 (14)	0.0354 (6)
H2A	0.0039	0.5364	0.0980	0.042*
C3	0.02680 (18)	0.3854 (4)	0.15894 (14)	0.0367 (7)
НЗА	-0.0241	0.3937	0.1766	0.044*
C4	0.08609 (19)	0.2873 (4)	0.17987 (14)	0.0353 (6)
H4A	0.0754	0.2306	0.2119	0.042*
C5	0.16161 (18)	0.2743 (3)	0.15271 (13)	0.0304 (5)
H5A	0.2010	0.2077	0.1665	0.036*
C6	0.17911 (15)	0.3596 (3)	0.10519 (11)	0.0243 (5)
C7	0.26100 (16)	0.3445 (3)	0.07589 (11)	0.0238 (4)
H7A	0.2545	0.3751	0.0365	0.029*
H7B	0.2777	0.2414	0.0762	0.029*
C8	0.34892 (14)	0.3852 (3)	0.18224 (10)	0.0210 (4)
C9	0.31074 (17)	0.4608 (3)	0.22617 (11)	0.0264 (5)
H9A	0.2867	0.5528	0.2195	0.032*
C10	0.3088 (2)	0.3977 (4)	0.27999 (12)	0.0334 (6)
H10A	0.2819	0.4465	0.3092	0.040*
C11	0.34654 (19)	0.2628 (4)	0.29046 (12)	0.0305 (5)
H11A	0.3461	0.2224	0.3268	0.037*
C12	0.38490 (18)	0.1881 (3)	0.24694 (13)	0.0313 (5)
H12A	0.4097	0.0969	0.2540	0.038*
C13	0.38647 (18)	0.2485 (3)	0.19300 (12)	0.0284 (5)
H13A	0.4125	0.1981	0.1638	0.034*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C14	0.43910 (15)	0.4021 (3)	0.07884 (10)	0.0208 (4)
C15	0.51087 (17)	0.4641 (4)	0.10215 (13)	0.0322 (6)
H15A	0.5074	0.5293	0.1326	0.039*
C16	0.58762 (17)	0.4292 (4)	0.08027 (13)	0.0305 (5)
H16A	0.6355	0.4708	0.0960	0.037*
C17	0.59297 (17)	0.3323 (3)	0.03495 (12)	0.0277 (5)
H17A	0.6445	0.3080	0.0205	0.033*
C18	0.52207 (19)	0.2721 (4)	0.01125 (13)	0.0349 (6)
H18A	0.5259	0.2081	-0.0196	0.042*
C19	0.44462 (17)	0.3060 (3)	0.03307 (12)	0.0296 (5)
H19A	0.3969	0.2645	0.0170	0.036*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01950 (4)	0.01675 (4)	0.02361 (4)	0.00189 (3)	0.00046 (3)	-0.00088 (3)
Cl1	0.0251 (3)	0.0164 (2)	0.0422 (3)	0.0030 (2)	0.0035 (2)	0.0030 (2)
P1	0.0198 (2)	0.0172 (3)	0.0215 (3)	0.0010 (2)	-0.0013 (2)	-0.0018 (2)
C1	0.0257 (11)	0.0302 (13)	0.0317 (13)	0.0055 (10)	-0.0051 (10)	-0.0069 (10)
C2	0.0240 (12)	0.0407 (17)	0.0414 (16)	0.0082 (11)	-0.0059 (11)	-0.0109 (13)
C3	0.0254 (12)	0.0434 (18)	0.0412 (16)	-0.0034 (12)	0.0006 (11)	-0.0158 (13)
C4	0.0312 (13)	0.0360 (16)	0.0387 (15)	-0.0118 (12)	0.0010 (11)	-0.0027 (12)
C5	0.0278 (12)	0.0252 (13)	0.0381 (14)	-0.0022 (10)	-0.0032 (10)	0.0006 (10)
C6	0.0218 (10)	0.0208 (11)	0.0302 (12)	-0.0006 (8)	-0.0048 (9)	-0.0058 (9)
C7	0.0251 (10)	0.0199 (10)	0.0262 (11)	0.0007 (9)	-0.0040 (9)	-0.0037 (8)
C8	0.0201 (9)	0.0202 (10)	0.0228 (10)	0.0004 (8)	-0.0015 (8)	0.0001 (8)
C9	0.0300 (12)	0.0212 (11)	0.0279 (12)	0.0021 (9)	0.0018 (9)	-0.0007 (9)
C10	0.0443 (16)	0.0291 (13)	0.0270 (12)	-0.0017 (12)	0.0070 (11)	-0.0016 (10)
C11	0.0350 (13)	0.0309 (14)	0.0255 (12)	-0.0053 (11)	0.0000 (10)	0.0042 (10)
C12	0.0322 (13)	0.0298 (14)	0.0319 (13)	0.0053 (11)	0.0004 (10)	0.0087 (11)
C13	0.0309 (12)	0.0258 (12)	0.0287 (12)	0.0081 (10)	0.0022 (10)	0.0035 (10)
C14	0.0217 (9)	0.0188 (10)	0.0219 (10)	0.0041 (8)	-0.0011 (8)	0.0012 (8)
C15	0.0241 (11)	0.0358 (15)	0.0367 (14)	0.0007 (11)	-0.0008 (10)	-0.0128 (12)
C16	0.0221 (11)	0.0350 (15)	0.0343 (13)	0.0024 (10)	-0.0021 (10)	-0.0026 (11)
C17	0.0251 (11)	0.0327 (14)	0.0253 (11)	0.0041 (10)	0.0036 (9)	0.0037 (10)
C18	0.0314 (13)	0.0429 (18)	0.0305 (13)	0.0014 (12)	0.0055 (11)	-0.0118 (12)
C19	0.0271 (11)	0.0351 (14)	0.0266 (12)	0.0002 (11)	0.0002 (9)	-0.0081 (11)

Geometric parameters (Å, °)

Au1—P1	2.2292 (7)	C9—C10	1.389 (4)
Au1—Cl1	2.2983 (7)	С9—Н9А	0.9300
P1-C8	1.810 (3)	C10-C11	1.383 (5)
P1C14	1.812 (2)	C10—H10A	0.9300
P1—C7	1.834 (3)	C11—C12	1.382 (4)
C1—C2	1.391 (4)	C11—H11A	0.9300
C1—C6	1.393 (4)	C12—C13	1.382 (4)
C1—H1A	0.9300	C12—H12A	0.9300
C2—C3	1.379 (5)	C13—H13A	0.9300

C2—H2A	0.9300	C14—C19	1.387 (4)
C3—C4	1.388 (5)	C14—C15	1.391 (4)
С3—НЗА	0.9300	C15—C16	1.386 (4)
C4—C5	1.391 (4)	C15—H15A	0.9300
C4—H4A	0.9300	C16—C17	1.383 (4)
C5—C6	1.391 (4)	C16—H16A	0.9300
С5—Н5А	0.9300	C17—C18	1.376 (4)
C6—C7	1.508 (4)	С17—Н17А	0.9300
С7—Н7А	0.9700	C18—C19	1.394 (4)
С7—Н7В	0.9700	C18—H18A	0.9300
C8—C9	1.391 (4)	C19—H19A	0.9300
C8—C13	1.398 (4)		
P1—Au1—Cl1	173.62 (2)	С10—С9—С8	119.6 (3)
C8—P1—C14	104.37 (11)	С10—С9—Н9А	120.2
C8—P1—C7	104.37 (12)	С8—С9—Н9А	120.2
C14—P1—C7	106.50 (12)	C11—C10—C9	120.4 (3)
C8—P1—Au1	116.52 (8)	C11—C10—H10A	119.8
C14—P1—Au1	110.26 (8)	C9—C10—H10A	119.8
C7—P1—Au1	113.94 (9)	C12—C11—C10	120.0 (3)
C2—C1—C6	120.2 (3)	C12—C11—H11A	120.0
C2—C1—H1A	119.9	C10—C11—H11A	120.0
C6—C1—H1A	119.9	C13—C12—C11	120.2 (3)
C3—C2—C1	120.6 (3)	С13—С12—Н12А	119.9
C3—C2—H2A	119.7	C11—C12—H12A	119.9
C1—C2—H2A	119.7	C12—C13—C8	120.0 (3)
C2—C3—C4	119.8 (3)	С12—С13—Н13А	120.0
С2—С3—НЗА	120.1	C8—C13—H13A	120.0
С4—С3—Н3А	120.1	C19—C14—C15	119.6 (2)
C3—C4—C5	119.7 (3)	C19—C14—P1	123.8 (2)
C3—C4—H4A	120.2	C15—C14—P1	116.63 (19)
C5—C4—H4A	120.2	C16—C15—C14	120.4 (3)
C6—C5—C4	120.9 (3)	C16—C15—H15A	119.8
С6—С5—Н5А	119.5	C14—C15—H15A	119.8
C4—C5—H5A	119.5	C17—C16—C15	119.9 (3)
C5—C6—C1	118.8 (3)	С17—С16—Н16А	120.0
C5—C6—C7	120.6 (2)	C15—C16—H16A	120.0
C1—C6—C7	120.6 (3)	C18—C17—C16	120.0 (3)
C6—C7—P1	111.89 (17)	C18—C17—H17A	120.0
С6—С7—Н7А	109.2	С16—С17—Н17А	120.0
Р1—С7—Н7А	109.2	C17—C18—C19	120.6 (3)
С6—С7—Н7В	109.2	C17—C18—H18A	119.7
Р1—С7—Н7В	109.2	C19-C18-H18A	119.7
Н7А—С7—Н7В	107.9	C14—C19—C18	119.6 (3)
C9—C8—C13	119.7 (2)	С14—С19—Н19А	120.2
C9—C8—P1	119.93 (19)	C18—C19—H19A	120.2
C13—C8—P1	120.16 (19)		
C6—C1—C2—C3	0.3 (5)	C8—C9—C10—C11	1.9 (5)
C1—C2—C3—C4	0.3 (5)	C9—C10—C11—C12	-1.5 (5)

supplementary materials

C2—C3—C4—C5	-0.8 (5)	C10-C11-C12-C13	0.7 (5)
C3—C4—C5—C6	0.8 (5)	C11—C12—C13—C8	-0.3 (5)
C4—C5—C6—C1	-0.2 (4)	C9—C8—C13—C12	0.6 (4)
C4—C5—C6—C7	-179.8 (3)	P1-C8-C13-C12	-174.1 (2)
C2-C1-C6-C5	-0.4 (4)	C8—P1—C14—C19	116.6 (2)
C2-C1-C6-C7	179.3 (3)	C7—P1—C14—C19	6.5 (3)
C5—C6—C7—P1	-83.8 (3)	Au1—P1—C14—C19	-117.6 (2)
C1—C6—C7—P1	96.6 (3)	C8—P1—C14—C15	-64.5 (2)
C8—P1—C7—C6	60.1 (2)	C7—P1—C14—C15	-174.6 (2)
C14—P1—C7—C6	170.15 (18)	Au1—P1—C14—C15	61.3 (2)
Au1—P1—C7—C6	-68.1 (2)	C19-C14-C15-C16	-0.6 (5)
C14—P1—C8—C9	147.9 (2)	P1-C14-C15-C16	-179.6 (2)
C7—P1—C8—C9	-100.5 (2)	C14—C15—C16—C17	0.1 (5)
Au1—P1—C8—C9	26.0 (2)	C15-C16-C17-C18	0.7 (5)
C14—P1—C8—C13	-37.4 (2)	C16-C17-C18-C19	-0.9 (5)
C7—P1—C8—C13	74.2 (2)	C15-C14-C19-C18	0.4 (4)
Au1—P1—C8—C13	-159.25 (19)	P1-C14-C19-C18	179.2 (2)
C13—C8—C9—C10	-1.4 (4)	C17-C18-C19-C14	0.4 (5)
P1-C8-C9-C10	173.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \mathbf{H} \cdots \!\!\!- A$
C7—H7B···Cl1 ⁱ	0.97	2.71	3.675 (3)	175
Symmetry codes: (i) $x, y-1, z$.				

Fig. 1

